Topological applications of long ω_1 -approximation sequences III

David Milovich Texas A&M International University

2015 Winter School in Abstract Analysis Hejnice, Czech Republic Outline of a proof of $Nt(X) = \aleph_0$ where $h: 2^{\lambda} \to [0, 1]^{\kappa}$ is continuous, $X = h[2^{\lambda}]$, and $\pi \chi(p, X) = w(X) = \kappa$ for all $p \in X$:

- 1. \mathcal{A} is a base of X of size κ consisting of F_{σ} sets.
- 2. $(M_{\alpha})_{\alpha < \kappa}$ is a long ω_1 -approximation sequence with $h, A \in M_0$.
- 3. $\mathcal{W}_{\alpha} \upharpoonright M_{\alpha} \subset \mathcal{A}_{\alpha} \upharpoonright M_{\alpha}$ is an efficient base of $X \upharpoonright M_{\alpha}$.

4.
$$\mathcal{V}_{\alpha} = \mathcal{W}_{\alpha} \setminus \uparrow \mathcal{W}_{<\alpha}$$
.

- 5. $\mathcal{U}_{\alpha} = \{ U \in \mathcal{V}_{\alpha} : \exists V \in \mathcal{V}_{\alpha} \ \overline{U} \subset V \}.$
- 6. $\mathcal{U} = \mathcal{U}_{<\kappa}$ is a base of *X*.
- 7. $h^{-1}[\overline{U}] \subset E_{\alpha,U}$ clopen $\subset \cap \{h^{-1}[W] : \overline{U} \subset W \in \mathcal{W}_{\alpha}\}.$
- 8. Nt(\mathcal{D}_{α}) = \aleph_0 where $\mathcal{D}_{\alpha} = \{E_{\alpha,U} : U \in \mathcal{U}_{\alpha}\}.$

9.
$$Nt(\mathcal{D}) = \aleph_0$$
 where $\mathcal{D} = \mathcal{D}_{<\kappa}$.
10. $Nt(\mathcal{U}) = \aleph_0$.

Let $\mathcal{B} = \operatorname{Clop}(2^{\lambda})$.

Let
$$\mathcal{C} = \mathcal{B} \cap \uparrow \{h^{-1}[U] : U \in \mathcal{U}\}.$$

Let $\mathcal{C}_{\alpha} = \mathcal{C} \cap M_{\alpha}$. Note that $\mathcal{D}_{\alpha} \subset \mathcal{C}_{\alpha}$.

To prove $Nt(\mathcal{D}) = \aleph_0$, it suffices to show that, for all $\alpha < \kappa$ and $H \in \mathcal{C}_{<\alpha}$,

1. $\mathcal{C}_{\alpha} \subset \uparrow \mathcal{D}_{\alpha}$,

2. $H \uparrow \cap \mathcal{D}_{<\alpha}$ is finite, and

3. $H \uparrow \cap \mathcal{D}_{\alpha} = \emptyset$.

To prove $\mathcal{C}_{\alpha} \subset \uparrow \mathcal{D}_{\alpha}$, suppose that $K \in \mathcal{C}_{\alpha}$.

Then M_{α} knows that $h^{-1}[A] \subset K$ for some $A \in \mathcal{A}$.

So, choosing A as above in \mathcal{A}_{α} , we then find $\overline{U} \subset W \subset A$ where $U \in \mathcal{U}_{\alpha}$ and $W \in \mathcal{W}_{\alpha}$, using the fact that $\mathcal{W}_{\alpha} \upharpoonright M_{\alpha}$ is a base and \mathcal{U}_{α} is a downward-closed subset of \mathcal{W}_{α} .

We then have $\mathcal{D}_{\alpha} \ni E_{\alpha,U} \subset h^{-1}[W] \subset h^{-1}[A] \subset K$.

To prove $H \uparrow \cap \mathcal{D}_{\alpha} = \emptyset$, we suppose $H \subset E_{\alpha,U} \in \mathcal{D}_{\alpha}$ and deduce a contradiction.

By definition of \mathcal{U}_{α} , we have $\overline{U} \subset V$ for some $V \in \mathcal{V}_{\alpha}$.

Inductively assuming $C_{<\alpha} \subset \uparrow D_{<\alpha}$, there exist $\beta < \alpha$ and $E_{\beta,T} \in D_{\beta}$ such that $E_{\beta,T} \subset H$. Hence,

$$h^{-1}[T] \subset E_{\beta,T} \subset H \subset E_{\alpha,U} \subset h^{-1}[V].$$

Hence, $T \subset V$. But $T \in \mathcal{U}_{\beta} \subset \mathcal{W}_{<\alpha}$ and $V \in \mathcal{V}_{\alpha} = \mathcal{W}_{\alpha} \setminus \uparrow \mathcal{W}_{<\alpha}$. Contradiction.

To prove that every $H \uparrow \cap \mathcal{D}_{\leq \alpha}$ is finite, proceed by induction on α . (3) makes limit steps trivial.

Suppose that $K \in \mathcal{D}_{<\alpha+1}$. We will show that $K \uparrow \cap \mathcal{D}_{<\alpha+1}$ is finite.

If $K \in \mathcal{D}_{<\alpha}$, then $K \uparrow \cap \mathcal{D}_{<\alpha+1}$ equals $K \uparrow \cap \mathcal{D}_{<\alpha}$, which is finite by our induction hypothesis.

So, assume that $K \in \mathcal{D}_{\alpha}$. Since $Nt(\mathcal{D}_{\alpha}) = \aleph_0$, the set $K \uparrow \cap \mathcal{D}_{\alpha}$ is finite.

Therefore, it suffices to show that $K \uparrow \cap \mathcal{D}_{<\alpha}$ is finite.

Recall that $\exists (\alpha)$ is finite, $M_{\leq \alpha} = \bigcup_{i \in \exists (\alpha)} N_{\alpha}^{i}$, and $N_{\alpha}^{i} \prec H(\theta)$.

It suffices to show that each $K \uparrow \cap \mathcal{D}_{<\alpha} \cap N_{\alpha}^{i}$ is finite.

By our induction hypothesis, it suffices to find $H \in \mathcal{C}_{<\alpha}$ such that $K \uparrow \cap \mathcal{D}_{<\alpha} \cap N^i_{\alpha} = H \uparrow \cap \mathcal{D}_{<\alpha} \cap N^i_{\alpha}$.

Since \mathcal{B} is just $Clop(2^{\lambda})$, $H = \{p \in 2^{\lambda} : p \upharpoonright N_{\alpha}^{i} \in K \upharpoonright N_{\alpha}^{i}\}$ satisfies $K \subset H \in \mathcal{B} \cap N_{\alpha}^{i}$ and $K \uparrow \cap \mathcal{B} \cap N_{\alpha}^{i} = H \uparrow \cap \mathcal{B} \cap N_{\alpha}^{i}$.

Since $K \in \mathcal{C}$ and \mathcal{C} is upward closed in \mathcal{B} , we have $H \in \mathcal{C} \cap N^i_{\alpha} \subset \mathcal{C}_{<\alpha}$.

Since $\mathcal{D}_{<\alpha} \subset \mathcal{C}_{<\alpha} \subset \mathcal{B}$, we have $K \uparrow \cap \mathcal{D}_{<\alpha} \cap N^i_{\alpha} = H \uparrow \cap \mathcal{D}_{<\alpha} \cap N^i_{\alpha}$.

Outline of a proof of $Nt(X) = \aleph_0$ where $h: 2^{\lambda} \to [0, 1]^{\kappa}$ is continuous, $X = h[2^{\lambda}]$, and $\pi \chi(p, X) = w(X) = \kappa$ for all $p \in X$:

- 1. \mathcal{A} is a base of X of size κ consisting of F_{σ} sets.
- 2. $(M_{\alpha})_{\alpha < \kappa}$ is a long ω_1 -approximation sequence with $h, \mathcal{A} \in M_0$.
- 3. $\mathcal{W}_{\alpha} \upharpoonright M_{\alpha} \subset \mathcal{A}_{\alpha} \upharpoonright M_{\alpha}$ is an efficient base of $X \upharpoonright M_{\alpha}$.

4.
$$\mathcal{V}_{\alpha} = \mathcal{W}_{\alpha} \setminus \uparrow \mathcal{W}_{<\alpha}$$
.

- 5. $\mathcal{U}_{\alpha} = \{ U \in \mathcal{V}_{\alpha} : \exists V \in \mathcal{V}_{\alpha} \ \overline{U} \subset V \}.$
- 6. $\mathcal{U} = \mathcal{U}_{<\kappa}$ is a base of *X*.

7.
$$h^{-1}[\overline{U}] \subset E_{\alpha,U}$$
 clopen $\subset \cap \{h^{-1}[W] : \overline{U} \subset W \in \mathcal{W}_{\alpha}\}.$

- 8. Nt(\mathcal{D}_{α}) = \aleph_0 where $\mathcal{D}_{\alpha} = \{E_{\alpha,U} : U \in \mathcal{U}_{\alpha}\}.$
- 9. Nt(\mathcal{D}) = \aleph_0 where $\mathcal{D} = \mathcal{D}_{<\kappa}$.

10. Nt(\mathcal{U}) = \aleph_0 .

Seeking a contradiction, suppose that

 $T \subset U_m \neq U_n$ and $T, U_m, U_n \in \mathcal{U}$ for all $m < n < \omega$.

Let $T \in \mathcal{U}_{\alpha}$ and let $U_m \in \mathcal{U}_{\beta_m}$ for all $m < \omega$.

Choose $S \in \mathcal{U}_{\alpha}$ such that $\overline{S} \subset T$. Then, for all m, we have $\mathcal{D} \ni E_{\alpha,S} \subset h^{-1}[T] \subset h^{-1}[U_m] \subset E_{\beta_m,U_m} \in \mathcal{D}.$

Since $Nt(\mathcal{D}) = \aleph_0$, we may thin out $(\beta_m)_{m < \omega}$ such that,

for some $\beta < \kappa$ and $U \in \mathcal{U}_{\beta}$, we have $\forall m \ E_{\beta_m, U_m} = E_{\beta, U}$.

Thin out $(\beta_m)_{m<\omega}$ again to make it constant or strictly increasing.

In the case $\beta_0 < \beta_1$, we have $\overline{U_1} \subset V$ for some $V \in \mathcal{V}_{\beta_1}$, so $h^{-1}[U_0] \subset E_{\beta,U} \subset h^{-1}[V],$

in contradiction with $U_0 \in \mathcal{U}_{\beta_0} \subset \mathcal{W}_{<\beta_1}$ and $V \in \mathcal{V}_{\beta_1} = \mathcal{W}_{\beta_1} \setminus \uparrow \mathcal{W}_{<\beta_1}$.

So, we are in the other case, $\beta_0 = \beta_m$ for all $m < \omega$.

Since $\mathcal{W}_{\beta_0} \upharpoonright M_{\beta_0}$ is an efficient base, each U_m a finite set \mathcal{F}_m of strict supersets in \mathcal{W}_{β_0} , but $\bigcup_{m < \omega} \mathcal{F}_m$ is infinite.

Given an arbitrary $i < \omega$, choose j > i such that $\mathcal{F}_j \not\subseteq \mathcal{F}_i$.

Choose $W \in \mathcal{F}_j \setminus \mathcal{F}_i$. Since $\mathcal{W}_{\alpha} \upharpoonright M_{\alpha}$ is an efficient base, $\overline{U_j} \subset W$.

Hence, $h^{-1}[\overline{U_i}] \subset E_{\beta,U} \subset h^{-1}[W]$; hence, $\overline{U_i} \subset W$. But $\neg (U_i \subsetneq W)$.

Hence
$$U_i = \overline{U_i} = W$$
; hence, $h^{-1}[U_i] = E_{\beta,U}$.

Thus, $U_i = h[E_{\beta,U}]$ for all $i < \omega$. Contradiction. \Box

An *FN-map* on a boolean algebra *B* is a function $f: B \to [B]^{\langle \aleph_0}$ such that, for all weakly increasing pairs $x \leq y$ in *B*, there exists $z \in f(x) \cap f(y)$ such that $x \leq z \leq y$.

B has the Freese-Nation (FN) property if it has an FN map.

A boolean subalgebra A of B is *relatively complete* if, for every $b \in B$, there exists $a \in A$ such that $A \cap \uparrow b = A \cap \uparrow a$. In this case we write $A \leq_{\mathsf{rc}} B$.

(Fuchino, 1994) The following are equivalent. (1) *B* has the FN. (2) $B \cap M \leq_{rc} B$ for all countable $M \prec H(\theta)$ with $B \in M$. (3) $B \cap M \leq_{rc} B$ for all $M \prec H(\theta)$ with $B \in M$. (Fuchino, 1994) The following are equivalent. (1) B has the FN. (2) $B \cap M \leq_{rc} B$ for all countable $M \prec H(\theta)$ with $B \in M$. (3) $B \cap M \leq_{rc} B$ for all $M \prec H(\theta)$ with $B \in M$.

Proof of (3) \Rightarrow (1) using a long ω_1 -approximation sequence:

Let $(M_{\alpha})_{\alpha < |B|}$ be a long ω_1 -approximation sequence with $B \in M_0$. For each $x \in B$, let $\rho(x) = \min\{\alpha : x \in M_{\alpha}\}.$

For each $\alpha < |B|$, choose a well-ordering \sqsubseteq_{α} of $\{x \in B : \rho(x) = \alpha\}$ with length at most ω . Set $\sqsubseteq = \bigcup_{\alpha < |A|} \sqsubseteq_{\alpha}$

For each α , $i < \exists (\alpha)$, and x with $\alpha = \rho(x)$, since $B \cap N^i_{\alpha} \leq_{\mathsf{rc}} B$, there exist $\pi^i_+(x) = \min(B \cap N^i_{\alpha} \cap \uparrow x)$ and $\pi^i_-(x) = \max(B \cap N^i_{\alpha} \cap \downarrow x)$.

 $\rho(\pi^i_+(x)), \rho(\pi^i_-(x)) < \rho(x)$ for all $i < \exists (\alpha)$. (There is no $i < \exists (0)$.)

Recursively define $f \colon B \to [B]^{\langle \aleph_0}$ by

$$f(x) = \{y : y \sqsubseteq x\} \cup \bigcup_{i < \exists (\rho(x))} \left(f(\pi^i_+(x)) \cup f(\pi^i_-(x)) \right).$$

Suppose $x \leq y$. We verify that $S = [x, y] \cap f(x) \cap f(y)$ is nonempty by induction on max{ $\rho(x), \rho(y)$ }.

If $\rho(x) = \rho(y)$, then $x \sqsubseteq y$, in which case $x \in S$, or $y \sqsubseteq x$, in which case $y \in S$.

If $\rho(x) < \rho(y)$, then $x \in N^i_{\rho(y)}$ for some *i*, in which case $[x, \pi^i_-(y)] \cap f(x) \cap f(\pi^i_-(y))$ is a nonempty subset of *S*.

If $\rho(y) < \rho(x)$, then $y \in N^i_{\rho(x)}$ for some *i*, in which case $[\pi^i_+(x), y] \cap f(\pi^i_+(x)) \cap f(y)$ is a nonempty subset of *S*. \Box

All free boolean algebras (*i.e.*, algebras isomorphic to some $Clop(2^{\lambda})$) and their retracts (*i.e.*, projective boolean algebras) have the FN.

All countable boolean algebras are retracts of $Clop(2^{\omega})$.

All \aleph_1 -sized boolean algebras with the FN are retracts of $Clop(2^{\omega_1})$.

If $\kappa \geq \omega_2$, then the clopen algebra $\exp(\operatorname{Clop}(2^{\omega_2}))$ of the Vietoris hyperspace $\exp(2^{\kappa})$ of nonempty closed subsets of 2^{κ} has the FN but is not a retract of a free boolean algebra and not even a subalgebra of a free boolean algebra.

Topologically speaking, $exp(2^{\kappa})$ is openly generated but is not Dugundji and not even dyadic.

Our theorem about homogeneous dyadic compacta generalizes a bit:

If X is a homogeneous continuous image of the Stone space Ult(B) of a boolean algebra B with the FN, then $Nt(X) = \aleph_0$.

Two boolean subalgebras $A, B \subset C$ commute if, for all pairs $A \ni x \leq y \in B$, there exists $z \in A \cap B$ such that $x \leq z \leq y$.

(Heindorf–Shapiro, 1994)

• A boolean algebra has the strong Freese-Nation property (SFN) if

it has a pairwise commuting cofinal family of finite subalgebras.

- Retracts of free boolean algebras have the SFN.
- $exp(Clop(2^{\omega_2}))$ has SFN.
- The SFN implies the FN.
- Does the FN imply the SFN?

Theorem (Milovich, 2014). There is a boolean algebra of size \aleph_2 with the FN but not the SFN.

The proof uses a long ω_1 -approximation sequence and uses almost all of coherence properties mentioned in Part I.

Lajos Soukup has recently announced a σ -closed version of long ω_1 -approximation sequences:

Assume GCH and \Box^{**}_{μ} for all regular uncountable μ . Then, for every cardinal κ and set x, there exist $(M_{\alpha})_{\alpha < \kappa}$ and $(N^{i}_{\alpha})_{i < \omega; \alpha < \kappa}$ such that

- $\kappa \subset \bigcup_{\alpha < \kappa} M_{\alpha}$.
- $x \in M_{lpha}$,
- $|M_{\alpha}| = \aleph_1$,
- $M_{<\alpha} = \bigcup_{i < \omega} N^i_{\alpha}$,
- $[M_{\alpha}]^{\omega} \subset M_{\alpha} \prec H(\theta)$, and
- $[N^i_{\alpha}]^{\omega} \subset N^i_{\alpha} \prec H(\theta).$

References

L. Heindorf and L. B. Shapiro, *Nearly Projective Boolean Algebras*, with an appendix by S. Fuchino, Lecture Notes in Mathematics **1596**, Springer-Verlag, Berlin, 1994.

D. Milovich, Noetherian types of homogeneous compacta and dyadic compacta, Topology and its Applications **156** (2008), 443–464.

D. Milovich, *On the strong Freese-Nation property* (2014), arXiv:1412.7443.

D. Soukup, *Davies-trees in infinite combinatorics* (2014), arXiv:1407.3604.

L. Soukup, On properties of families of sets (Part 3) (2014), http://bcc.impan.pl/14Young/index.php/slides.