Topological applications of Iong ω_{1}-approximation sequences III

David Milovich
Texas A\&M International University

2015 Winter School in Abstract Analysis Hejnice, Czech Republic

Outline of a proof of $\operatorname{Nt}(X)=\aleph_{0}$ where $h: 2^{\lambda} \rightarrow[0,1]^{\kappa}$ is continuous, $X=h\left[2^{\lambda}\right]$, and $\pi \chi(p, X)=\mathrm{w}(X)=\kappa$ for all $p \in X:$

1. \mathcal{A} is a base of X of size κ consisting of F_{σ} sets.
2. $\left(M_{\alpha}\right)_{\alpha<\kappa}$ is a long ω_{1}-approximation sequence with $h, \mathcal{A} \in M_{0}$.
3. $\mathcal{W}_{\alpha} \upharpoonright M_{\alpha} \subset \mathcal{A}_{\alpha} \upharpoonright M_{\alpha}$ is an efficient base of $X \upharpoonright M_{\alpha}$.
4. $\mathcal{V}_{\alpha}=\mathcal{W}_{\alpha} \backslash \uparrow \mathcal{W}_{<\alpha}$.
5. $\mathcal{U}_{\alpha}=\left\{U \in \mathcal{V}_{\alpha}: \exists V \in \mathcal{V}_{\alpha} \bar{U} \subset V\right\}$.
6. $\mathcal{U}=\mathcal{U}_{<\kappa}$ is a base of X.
7. $h^{-1}[\bar{U}] \subset E_{\alpha, U}$ clopen $\subset \cap\left\{h^{-1}[W]: \bar{U} \subset W \in \mathcal{W}_{\alpha}\right\}$.
8. $\operatorname{Nt}\left(\mathcal{D}_{\alpha}\right)=\aleph_{0}$ where $\mathcal{D}_{\alpha}=\left\{E_{\alpha, U}: U \in \mathcal{U}_{\alpha}\right\}$.
9. $\operatorname{Nt}(\mathcal{D})=\aleph_{0}$ where $\mathcal{D}=\mathcal{D}_{<\kappa}$.
10. $\operatorname{Nt}(\mathcal{U})=\aleph_{0}$.

Let $\mathcal{B}=\operatorname{Clop}\left(2^{\lambda}\right)$.
Let $\mathcal{C}=\mathcal{B} \cap \uparrow\left\{h^{-1}[U]: U \in \mathcal{U}\right\}$.
Let $\mathcal{C}_{\alpha}=\mathcal{C} \cap M_{\alpha}$. Note that $\mathcal{D}_{\alpha} \subset \mathcal{C}_{\alpha}$.

To prove $\operatorname{Nt}(\mathcal{D})=\aleph_{0}$, it suffices to show that, for all $\alpha<\kappa$ and $H \in \mathcal{C}_{<\alpha}$,

1. $\mathcal{C}_{\alpha} \subset \uparrow \mathcal{D}_{\alpha}$,
2. $H \uparrow \cap \mathcal{D}_{<\alpha}$ is finite, and
3. $H \uparrow \cap \mathcal{D}_{\alpha}=\varnothing$.

For all $\alpha<\kappa$ and $H \in \mathcal{C}_{<\alpha}$,
(1) $\mathcal{C}_{\alpha} \subset \uparrow \mathcal{D}_{\alpha}$,
(2) $H \uparrow \cap \mathcal{D}_{<\alpha}$ is finite, and
(3) $H \uparrow \cap \mathcal{D}_{\alpha}=\varnothing$:

To prove $\mathcal{C}_{\alpha} \subset \uparrow \mathcal{D}_{\alpha}$, suppose that $K \in \mathcal{C}_{\alpha}$.

Then M_{α} knows that $h^{-1}[A] \subset K$ for some $A \in \mathcal{A}$.

So, choosing A as above in \mathcal{A}_{α}, we then find $\bar{U} \subset W \subset A$ where $U \in \mathcal{U}_{\alpha}$ and $W \in \mathcal{W}_{\alpha}$, using the fact that $\mathcal{W}_{\alpha} \upharpoonright M_{\alpha}$ is a base and \mathcal{U}_{α} is a downward-closed subset of \mathcal{W}_{α}.

We then have $\mathcal{D}_{\alpha} \ni E_{\alpha, U} \subset h^{-1}[W] \subset h^{-1}[A] \subset K$.

For all $\alpha<\kappa$ and $H \in \mathcal{C}_{<\alpha}$,
(1) $\mathcal{C}_{\alpha} \subset \uparrow \mathcal{D}_{\alpha}$,
(2) $H \uparrow \cap \mathcal{D}_{<\alpha}$ is finite, and
(3) $H \uparrow \cap \mathcal{D}_{\alpha}=\varnothing$:

To prove $H \uparrow \cap \mathcal{D}_{\alpha}=\varnothing$, we suppose $H \subset E_{\alpha, U} \in \mathcal{D}_{\alpha}$ and deduce a contradiction.

By definition of \mathcal{U}_{α}, we have $\bar{U} \subset V$ for some $V \in \mathcal{V}_{\alpha}$.

Inductively assuming $\mathcal{C}_{<\alpha} \subset \uparrow \mathcal{D}_{<\alpha}$, there exist $\beta<\alpha$ and $E_{\beta, T} \in \mathcal{D}_{\beta}$ such that $E_{\beta, T} \subset H$. Hence,

$$
h^{-1}[T] \subset E_{\beta, T} \subset H \subset E_{\alpha, U} \subset h^{-1}[V]
$$

Hence, $T \subset V$. But $T \in \mathcal{U}_{\beta} \subset \mathcal{W}_{<\alpha}$ and $V \in \mathcal{V}_{\alpha}=\mathcal{W}_{\alpha} \backslash \uparrow \mathcal{W}_{<\alpha}$. Contradiction.

For all $\alpha<\kappa$ and $H \in \mathcal{C}_{<\alpha}$,
(1) $\mathcal{C}_{\alpha} \subset \uparrow \mathcal{D}_{\alpha}$,
(2) $H \uparrow \cap \mathcal{D}_{<\alpha}$ is finite, and
(3) $H \uparrow \cap \mathcal{D}_{\alpha}=\varnothing$:

To prove that every $H \uparrow \cap \mathcal{D}_{<\alpha}$ is finite, proceed by induction on α. (3) makes limit steps trivial.

Suppose that $K \in \mathcal{D}_{<\alpha+1}$. We will show that $K \uparrow \cap \mathcal{D}_{<\alpha+1}$ is finite.
If $K \in \mathcal{D}_{<\alpha}$, then $K \uparrow \cap \mathcal{D}_{<\alpha+1}$ equals $K \uparrow \cap \mathcal{D}_{<\alpha}$, which is finite by our induction hypothesis.

So, assume that $K \in \mathcal{D}_{\alpha}$. Since $\operatorname{Nt}\left(\mathcal{D}_{\alpha}\right)=\aleph_{0}$, the set $K \uparrow \cap \mathcal{D}_{\alpha}$ is finite.

Therefore, it suffices to show that $K \uparrow \cap \mathcal{D}_{<\alpha}$ is finite.
Recall that $7(\alpha)$ is finite, $M_{<\alpha}=\bigcup_{i \in\urcorner(\alpha)} N_{\alpha}^{i}$, and $N_{\alpha}^{i} \prec H(\theta)$.

For all $\alpha<\kappa$ and $H \in \mathcal{C}_{<\alpha}$,
(1) $\mathcal{C}_{\alpha} \subset \uparrow \mathcal{D}_{\alpha}$,
(2) $H \uparrow \cap \mathcal{D}_{<\alpha}$ is finite, and
(3) $H \uparrow \cap \mathcal{D}_{\alpha}=\varnothing$:

It suffices to show that each $K \uparrow \cap \mathcal{D}_{<\alpha} \cap N_{\alpha}^{i}$ is finite.

By our induction hypothesis, it suffices to find $H \in \mathcal{C}<\alpha$ such that $K \uparrow \cap \mathcal{D}_{<\alpha} \cap N_{\alpha}^{i}=H \uparrow \cap \mathcal{D}_{<\alpha} \cap N_{\alpha}^{i}$.

Since \mathcal{B} is just $\operatorname{Clop}\left(2^{\lambda}\right), H=\left\{p \in 2^{\lambda}: p \upharpoonright N_{\alpha}^{i} \in K \upharpoonright N_{\alpha}^{i}\right\}$ satisfies $K \subset H \in \mathcal{B} \cap N_{\alpha}^{i}$ and $K \uparrow \cap \mathcal{B} \cap N_{\alpha}^{i}=H \uparrow \cap \mathcal{B} \cap N_{\alpha}^{i}$.

Since $K \in \mathcal{C}$ and \mathcal{C} is upward closed in \mathcal{B}, we have $H \in \mathcal{C} \cap N_{\alpha}^{i} \subset \mathcal{C}_{<\alpha}$.

Since $\mathcal{D}_{<\alpha} \subset \mathcal{C}_{<\alpha} \subset \mathcal{B}$, we have $K \uparrow \cap \mathcal{D}_{<\alpha} \cap N_{\alpha}^{i}=H \uparrow \cap \mathcal{D}_{<\alpha} \cap N_{\alpha}^{i}$.

Outline of a proof of $\operatorname{Nt}(X)=\aleph_{0}$ where $h: 2^{\lambda} \rightarrow[0,1]^{\kappa}$ is continuous, $X=h\left[2^{\lambda}\right]$, and $\pi \chi(p, X)=\mathrm{w}(X)=\kappa$ for all $p \in X:$

1. \mathcal{A} is a base of X of size κ consisting of F_{σ} sets.
2. $\left(M_{\alpha}\right)_{\alpha<\kappa}$ is a long ω_{1}-approximation sequence with $h, \mathcal{A} \in M_{0}$.
3. $\mathcal{W}_{\alpha} \upharpoonright M_{\alpha} \subset \mathcal{A}_{\alpha} \upharpoonright M_{\alpha}$ is an efficient base of $X \upharpoonright M_{\alpha}$.
4. $\mathcal{V}_{\alpha}=\mathcal{W}_{\alpha} \backslash \uparrow \mathcal{W}_{<\alpha}$.
5. $\mathcal{U}_{\alpha}=\left\{U \in \mathcal{V}_{\alpha}: \exists V \in \mathcal{V}_{\alpha} \bar{U} \subset V\right\}$.
6. $\mathcal{U}=\mathcal{U}_{<\kappa}$ is a base of X.
7. $h^{-1}[\bar{U}] \subset E_{\alpha, U}$ clopen $\subset \cap\left\{h^{-1}[W]: \bar{U} \subset W \in \mathcal{W}_{\alpha}\right\}$.
8. $\operatorname{Nt}\left(\mathcal{D}_{\alpha}\right)=\aleph_{0}$ where $\mathcal{D}_{\alpha}=\left\{E_{\alpha, U}: U \in \mathcal{U}_{\alpha}\right\}$.
9. $\operatorname{Nt}(\mathcal{D})=\aleph_{0}$ where $\mathcal{D}=\mathcal{D}_{<\kappa}$.
10. $\operatorname{Nt}(\mathcal{U})=\aleph_{0}$.

Seeking a contradiction, suppose that
$T \subset U_{m} \neq U_{n}$ and $T, U_{m}, U_{n} \in \mathcal{U}$ for all $m<n<\omega$.

Let $T \in \mathcal{U}_{\alpha}$ and let $U_{m} \in \mathcal{U}_{\beta_{m}}$ for all $m<\omega$.
Choose $S \in \mathcal{U}_{\alpha}$ such that $\bar{S} \subset T$. Then, for all m, we have

$$
\mathcal{D} \ni E_{\alpha, S} \subset h^{-1}[T] \subset h^{-1}\left[U_{m}\right] \subset E_{\beta_{m}, U_{m}} \in \mathcal{D}
$$

Since $\operatorname{Nt}(\mathcal{D})=\aleph_{0}$, we may thin out $\left(\beta_{m}\right)_{m<\omega}$ such that,
for some $\beta<\kappa$ and $U \in \mathcal{U}_{\beta}$, we have $\forall m E_{\beta_{m}, U_{m}}=E_{\beta, U}$.

Thin out $\left(\beta_{m}\right)_{m<\omega}$ again to make it constant or strictly increasing.

In the case $\beta_{0}<\beta_{1}$, we have $\overline{U_{1}} \subset V$ for some $V \in \mathcal{V}_{\beta_{1}}$, so

$$
h^{-1}\left[U_{0}\right] \subset E_{\beta, U} \subset h^{-1}[V],
$$

in contradiction with $U_{0} \in \mathcal{U}_{\beta_{0}} \subset \mathcal{W}_{<\beta_{1}}$ and $V \in \mathcal{V}_{\beta_{1}}=\mathcal{W}_{\beta_{1}} \backslash \uparrow \mathcal{W}_{<\beta_{1}}$.
So, we are in the other case, $\beta_{0}=\beta_{m}$ for all $m<\omega$.
Since $\mathcal{W}_{\beta_{0}} \upharpoonright M_{\beta_{0}}$ is an efficient base, each U_{m} a finite set \mathcal{F}_{m} of strict supersets in $\mathcal{W}_{\beta_{0}}$, but $\cup_{m<\omega} \mathcal{F}_{m}$ is infinite.

Given an arbitrary $i<\omega$, choose $j>i$ such that $\mathcal{F}_{j} \nsubseteq \mathcal{F}_{i}$.
Choose $W \in \mathcal{F}_{j} \backslash \mathcal{F}_{i}$. Since $\mathcal{W}_{\alpha} \upharpoonright M_{\alpha}$ is an efficient base, $\overline{U_{j}} \subset W$.
Hence, $h^{-1}\left[\overline{U_{i}}\right] \subset E_{\beta, U} \subset h^{-1}[W]$; hence, $\overline{U_{i}} \subset W$. But $\neg\left(U_{i} \subsetneq W\right)$.
Hence $U_{i}=\overline{U_{i}}=W$; hence, $h^{-1}\left[U_{i}\right]=E_{\beta, U}$.
Thus, $U_{i}=h\left[E_{\beta, U}\right]$ for all $i<\omega$. Contradiction. \square

An FN-map on a boolean algebra B is a function $f: B \rightarrow[B]<\aleph_{0}$ such that, for all weakly increasing pairs $x \leq y$ in B, there exists $z \in f(x) \cap f(y)$ such that $x \leq z \leq y$.
B has the Freese-Nation (FN) property if it has an FN map.

A boolean subalgebra A of B is relatively complete if, for every $b \in B$, there exists $a \in A$ such that $A \cap \uparrow b=A \cap \uparrow a$. In this case we write $A \leq r c B$.
(Fuchino, 1994) The following are equivalent.
(1) B has the FN .
(2) $B \cap M \leq r c B$ for all countable $M \prec H(\theta)$ with $B \in M$.
(3) $B \cap M \leq r c B$ for all $M \prec H(\theta)$ with $B \in M$.
(Fuchino, 1994) The following are equivalent.
(1) B has the FN.
(2) $B \cap M \leq r c B$ for all countable $M \prec H(\theta)$ with $B \in M$.
(3) $B \cap M \leq \mathrm{rc} B$ for all $M \prec H(\theta)$ with $B \in M$.

Proof of $(3) \Rightarrow(1)$ using a long ω_{1}-approximation sequence:
Let $\left(M_{\alpha}\right)_{\alpha<|B|}$ be a long ω_{1}-approximation sequence with $B \in M_{0}$. For each $x \in B$, let $\rho(x)=\min \left\{\alpha: x \in M_{\alpha}\right\}$.

For each $\alpha<|B|$, choose a well-ordering $\sqsubseteq \alpha$ of $\{x \in B: \rho(x)=\alpha\}$ with length at most ω. Set $\sqsubseteq=\cup_{\alpha<|A|} \sqsubseteq_{\alpha}$

For each $\alpha, i<7(\alpha)$, and x with $\alpha=\rho(x)$, since $B \cap N_{\alpha}^{i} \leq \mathrm{rc} B$, there exist $\pi_{+}^{i}(x)=\min \left(B \cap N_{\alpha}^{i} \cap \uparrow x\right)$ and $\pi_{-}^{i}(x)=\max \left(B \cap N_{\alpha}^{i} \cap \downarrow x\right)$.
$\rho\left(\pi_{+}^{i}(x)\right), \rho\left(\pi_{-}^{i}(x)\right)<\rho(x)$ for all $i<\not \subset(\alpha)$. (There is no $i<7(0)$.)

Recursively define $f: B \rightarrow[B]^{<\aleph_{0}}$ by

$$
f(x)=\{y: y \sqsubseteq x\} \cup \bigcup_{i<\rceil(\rho(x))}\left(f\left(\pi_{+}^{i}(x)\right) \cup f\left(\pi_{-}^{i}(x)\right)\right) .
$$

Suppose $x \leq y$. We verify that $S=[x, y] \cap f(x) \cap f(y)$ is nonempty by induction on $\max \{\rho(x), \rho(y)\}$.

If $\rho(x)=\rho(y)$, then
$x \sqsubseteq y$, in which case $x \in S$, or
$y \sqsubseteq x$, in which case $y \in S$.
If $\rho(x)<\rho(y)$, then $x \in N_{\rho(y)}^{i}$ for some i, in which case $\left[x, \pi_{-}^{i}(y)\right] \cap f(x) \cap f\left(\pi_{-}^{i}(y)\right)$ is a nonempty subset of S.

If $\rho(y)<\rho(x)$, then $y \in N_{\rho(x)}^{i}$ for some i, in which case $\left[\pi_{+}^{i}(x), y\right] \cap f\left(\pi_{+}^{i}(x)\right) \cap f(y)$ is a nonempty subset of $S . \square$

All free boolean algebras (i.e., algebras isomorphic to some $\operatorname{Clop}\left(2^{\lambda}\right)$) and their retracts (i.e., projective boolean algebras) have the FN.

All countable boolean algebras are retracts of $\operatorname{Clop}\left(2^{\omega}\right)$.

All \aleph_{1}-sized boolean algebras with the $F N$ are retracts of $\operatorname{Clop}\left(2^{\omega_{1}}\right)$.
If $\kappa \geq \omega_{2}$, then the clopen algebra $\exp \left(\operatorname{Clop}\left(2^{\omega_{2}}\right)\right)$ of the Vietoris hyperspace $\exp \left(2^{\kappa}\right)$ of nonempty closed subsets of 2^{κ} has the FN but is not a retract of a free boolean algebra and not even a subalgebra of a free boolean algebra.

Topologically speaking, $\exp \left(2^{\kappa}\right)$ is openly generated but is not Dugundji and not even dyadic.

Our theorem about homogeneous dyadic compacta generalizes a bit:

If X is a homogeneous continuous image of the Stone space $\operatorname{Ult}(B)$ of a boolean algebra B with the FN , then $\mathrm{Nt}(X)=\aleph_{0}$.

Two boolean subalgebras $A, B \subset C$ commute if, for all pairs $A \ni x \leq$ $y \in B$, there exists $z \in A \cap B$ such that $x \leq z \leq y$.
(Heindorf-Shapiro, 1994)

- A boolean algebra has the strong Freese-Nation property (SFN) if it has a pairwise commuting cofinal family of finite subalgebras.
- Retracts of free boolean algebras have the SFN.
- $\exp \left(\operatorname{Clop}\left(2^{\omega_{2}}\right)\right)$ has SFN.
- The SFN implies the FN.
- Does the FN imply the SFN?

Theorem (Milovich, 2014). There is a boolean algebra of size \aleph_{2} with the FN but not the SFN.

The proof uses a long ω_{1}-approximation sequence and uses almost all of coherence properties mentioned in Part I.

Lajos Soukup has recently announced a σ-closed version of long ω_{1}-approximation sequences:

Assume GCH and $\square_{\mu}^{* *}$ for all regular uncountable μ. Then, for every cardinal κ and set x, there exist $\left(M_{\alpha}\right)_{\alpha<\kappa}$ and $\left(N_{\alpha}^{i}\right)_{i<\omega ; \alpha<\kappa}$ such that

- $\kappa \subset \cup_{\alpha<\kappa} M_{\alpha}$.
- $x \in M_{\alpha}$,
- $\left|M_{\alpha}\right|=\aleph_{1}$,
- $M_{<\alpha}=\bigcup_{i<\omega} N_{\alpha}^{i}$,
- $\left[M_{\alpha}\right]^{\omega} \subset M_{\alpha} \prec H(\theta)$, and
- $\left[N_{\alpha}^{i}\right]{ }^{\omega} \subset N_{\alpha}^{i} \prec H(\theta)$.

References

L. Heindorf and L. B. Shapiro, Nearly Projective Boolean Algebras, with an appendix by S. Fuchino, Lecture Notes in Mathematics 1596, Springer-Verlag, Berlin, 1994.
D. Milovich, Noetherian types of homogeneous compacta and dyadic compacta, Topology and its Applications 156 (2008), 443-464.
D. Milovich, On the strong Freese-Nation property (2014), arXiv:1412.7443.
D. Soukup, Davies-trees in infinite combinatorics (2014), arXiv:1407.3604.
L. Soukup, On properties of families of sets (Part 3) (2014), http://bcc.impan.pl/14Young/index.php/slides.

